Sequence amplification via cell passaging creates spurious signals of positive adaptation in influenza virus H3N2 hemagglutinin
نویسندگان
چکیده
Clinical influenza A virus isolates are frequently not sequenced directly. Instead, a majority of these isolates (~70% in 2015) are first subjected to passaging for amplification, most commonly in non-human cell culture. Here, we find that this passaging leaves distinct signals of adaptation, which can confound evolutionary analyses of the viral sequences. We find distinct patterns of adaptation to Madin-Darby (MDCK) and monkey cell culture absent from unpassaged hemagglutinin sequences. These patterns also dominate pooled datasets not separated by passaging type, and they increase in proportion to the number of passages performed. By contrast, MDCK-SIAT1 passaged sequences seem mostly (but not entirely) free of passaging adaptations. Contrary to previous studies, we find that using only internal branches of influenza virus phylogenetic trees is insufficient to correct for passaging artifacts. These artifacts can only be safely avoided by excluding passaged sequences entirely from subsequent analysis. We conclude that future influenza virus evolutionary analyses should appropriately control for potentially confounding effects of passaging adaptations.
منابع مشابه
بررسی توالی ژن M2 ویروسهای آنفولانزا جداشده از بیماران ایرانی در سال 1393 بهمنظور تعیین مقاومت به آدامانتانها
Background and Objective: Adamantanes, amantadine, and rimantadine have been used for many years for prevention and treatment of influenza virus A infections. These drugs are influenza virus M2 protein inhibitors and some amino acids substitutions in transmembrane portion of this protein cause resistance to them. This study was done for survey of adamantane resistance related nucleotide sequenc...
متن کاملPhylogenetic Comparison of Influenza Virus Isolates from Three Medical Centers in Tehran with the Vaccine Strains during 2008-2009
Background: Influenza virus is a major infectious pathogen of the respiratory system causing a high degree of morbidity and mortality annually. The worldwide vaccines are decided and produced annually by World Health Organization and licensed companies based on the samples collected from all over the world. The aim of this study was to determine phylogenecity and heterogenecity of the circulati...
متن کاملA structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine
The effectiveness of the annual influenza vaccine has declined in recent years, especially for the H3N2 component, and is a concern for global public health. A major cause for this lack in effectiveness has been attributed to the egg-based vaccine production process. Substitutions on the hemagglutinin glycoprotein (HA) often arise during virus passaging that change its antigenicity and hence va...
متن کاملA Reverse transcription-PCR assay for detection of type A influenza virus and differentiation of avian H7 subtype
Abstract : Avian influenza virus (AIV) infection is a major cause of influenza mortality in birds and can cause human mortality and morbidity. Although the risk of infection with avian influenza virus (AIV) is generally low for most people, the pathogenic virus can cross the species barrier and acquires the ability to infect and be transmitted among the human population; therefore the ra...
متن کاملDesigning of A Multi-epitope Recombinant Protein, Consisting of Several Conserved Epitopes from Hemagglutinin Protein of the H1N1 and H5N1 Strains of Influenza Virus by Immunoinformatics Approaches
Introduction: According to marked advances in bioinformatics studies, development of influenza vaccines has been greatly modified in many studies. In this study, we have designed a multi-epitope recombinant protein, consisting of several conserved epitopes from Hemagglutinin protein of the H1N1 and H5N1 strains of Influenza virus by immunoinformatics approaches. Materials and Methods: The regis...
متن کامل